CHEMISTRY OF ACRONYCINE, XII. FURTHER OLIGOMERS OF NORACRONYCINE ${ }^{1}$

Shinji Funayama ${ }^{2}$ and Geoffrey A. Cordell*
Program for Collaborative Research in the Pharmaceutical Sciences, College of Pbarmacy, University of Illinois at Cbicago, Cbicago, Illinois 60612

Abstract

The polymerization of noracronycine (2) with methanolic HCl has yielded a second tetramer of 2 , designated as $\mathrm{AB}-4$ and determined to have the structure 7 through spectroscopic analysis. Two further pentamers of 2, designated as AB-6A and AB-6B, have also been obtained, and their structures are tentatively proposed as 9 and $\mathbf{5}$, respectively.

Acronycine (1), an alkaloid from the bark of Baurella simplicifolia (Endl.) Hartley (Rutaceae) (2-5), possesses a broad spectrum of in vivo antineoplastic activity (6-9), yet relatively little is known of its chemistry and mode of action (4,5). As reported previously, when noracronycine (2) was treated with $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ under N_{2} at room temperature, AB-1 (3) was selectively synthesized in 4.0% yield (10). Yields could be improved by treating 2 with varying ratios of $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and MeOH . The optimal yield (39%) of $\mathbf{3}$ was observed with $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}(1: 1)(10)$. However, treatment of 2 with $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}(1: 9)$ afforded $\mathrm{AB}-3$ (4) in 28% yield (10), together with other minor products. On this basis, it was thought that if a mixture of AB-1 (3) and $\mathbf{2}$ were used instead of $\mathbf{2}$ alone, the yields of the trimer and the tetramer would be increased.

R

1	CH_{3}
2	H

A 3:1 mixture of $\mathbf{2}$ and 3 was prepared by treating 2 with $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}(9: 1)$ (10), and the resulting orange-yellow powder was redissolved in a mixture of 98% $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}(1: 9)$ and stirred for 24 h under N_{2} at room temperature. The final reaction mixture was rich not only in AB-3 (4) (20% yield), but also in AB-4 (9% yield). Previously, AB- 4 had been detected as one of the very minor products when 2 was treated with $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}(1: 9)$, and was isolated in only 0.16% yield when 2 was allowed to react with methanolic HCl . At that time, no further studies were conducted because of limited availability. The structure elucidation of AB-4, which is presented here, was conducted principally through a ${ }^{1} \mathrm{H}$-nmr comparison of $A B-4$ with $\mathbf{2}$, 3,4 , and the pentamer $A B-5 A(5)$ available from previous work (11-14).

In the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathrm{AB}-4$, four sets of geminal methyl signals ($\delta 0.465$, $0.484,0.543,0.873,0.940,1.005,1.487$, and 1.647), four hydrogen-bonded phenolic OH signals ($\delta 14.291,14.979,15.087$, and 15.458), four $\mathrm{N}-\mathrm{CH}_{3}$ signals (δ $3.290,3.296,3.643$, and 3.681) and seventeen aromatic protons were observed. Nine resonances, three triplets at $\delta 1.358(J=12.8 \mathrm{~Hz}), 1.712(J=11.8 \mathrm{~Hz})$ and 2.080

[^0]
$(J=12.4 \mathrm{~Hz})$, and six doublets of doublets at $\delta 1.441(J=11.4,8.0 \mathrm{~Hz}), 1.809(J=$ $12.7,6.6 \mathrm{~Hz}), 2.214(J=13.4,6.7 \mathrm{~Hz}), 4.563(J=12.1,6.8 \mathrm{~Hz}), 4.623(J=11.9$, 6.7 Hz), and $5.168(J=11.6,7.1 \mathrm{~Hz})$ were attributed to the protons of three pyran rings (12). However, only one aromatic singlet ($\delta 6.362$) and only one pair of doublets $(J=9.6 \mathrm{~Hz}$) for the chromene ring ($\delta 4.994$ and 6.041) were observed. These data suggested that AB-4 was a tetramer of noracronycine (2) where the three carbon-carbon bonds had been formed between $\mathrm{C}-1$ of one unit and $\mathrm{C}-5$ of another unit (12-14).

Unambiguous ${ }^{1} \mathrm{H}-\mathrm{nmr}$ assignments for noracronycine (2), AB-1 (3), AB-2 (6), and AB-3 (4) had previously been achieved through the use of selective proton decoupling

$4 \quad \mathrm{AB}-3$
and nOe techniques $(12,13)$. Tentative ${ }^{1} \mathrm{H}$-nmr assignments for the all-angular pentamer AB-5A were accomplished through a comparison of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data with those of noracronycine (2), AB-1 (3), and AB-3 (4) (11-14).

5 AB-5A, AB-6B

In the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathrm{AB}-4$, there were three doublets that could be assigned to the four aromatic protons peri to the $\mathrm{N}-\mathrm{CH}_{3}$ groups, namely the signals at $\delta 6.651$ $(\mathrm{d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.760(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, and $7.362(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$. In the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of noracronycine (2), this signal appeared at $\delta 7.447$ and in $\mathrm{AB}-2$ (7) at $\delta 7.420$ and 7.459 (13). But in the ${ }^{1} \mathrm{H}$-nmr spectrum of $\mathrm{AB}-1$ (3), AB-3 (4), and AB$5 A(5)$, these signals appeared at $\delta 6.907$ and $7.413, \delta 6.734,6.802$ and 7.373 and δ $6.606,6.670,6.743,6.758$ and 7.356 , respectively (11-14). That is, the signal(s) from the upper unit(s) appeared about $0.51-0.75 \mathrm{ppm}$ higher than those from the lower unit, and also 0.54-0.84 ppm higher than that in noracronycine (2) $(10,13)$. Three higher-field signals were observed in the spectrum of AB-4 [($\delta 6.651$ and $6.760(2 \mathrm{H})]$, suggesting the presence of three angular units each attached to an angular unit (12-14). Therefore, it was envisaged that AB-4 possessed the angular-angular-angular-angular structure represented by 7 .

Most of the features of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathrm{AB}-4$ (7) could now be assigned with certainty. A singlet aromatic proton ($\delta 6.362, \mathrm{C}-5 \mathrm{H}$), a pair of doublets ($\delta 4.994$,

6 AB-2

a $\quad(3 \mathrm{H}, \mathrm{s}): 0.465,0.484,0.543,0.873$
b $\quad(1 \mathrm{H}, \mathrm{t}): 1.358,1.712$
c $\quad(1 \mathrm{H}, \mathrm{dd}): 1.441,1.809$
d $\quad(1 \mathrm{H}, \mathrm{t}): 7.115,7.136,7.157$
e $\quad(1 \mathrm{H}, \mathrm{t}): 7.311,7.331(2 \mathrm{H}), 7.363$
$\mathrm{OH}: \quad 14.979,15.087,15.458$
$\mathrm{C}-2^{\prime \prime \prime} \mathrm{H}$ and $\left.\delta 6.041, \mathrm{C}-1^{\prime \prime \prime} \mathrm{H}\right)$, four sets of geminal methyl signals $[0.465,0.484$, 0.543 , and $0.873\left(13^{\prime}-\mathrm{CH}_{3}, 14^{\prime}-\mathrm{CH}_{3}, 13^{\prime \prime}-\mathrm{CH}_{3}\right.$, and $\left.14^{\prime \prime}-\mathrm{CH}_{3}\right), \delta 0.940$ and 1.005 $\left(13^{\prime \prime \prime}-\mathrm{CH}_{3}\right.$ and $\left.14^{\prime \prime \prime}-\mathrm{CH}_{3}\right)$ and $\delta 1.487$ and $1.647\left(13-\mathrm{CH}_{3}\right.$ and $\left.\left.14-\mathrm{CH}_{3}\right)\right]$, a set of methine and methylene protons $[\delta 5.168(\mathrm{C}-1 \mathrm{H}), \delta 2.080$ and $2.214(\mathrm{C}-2 \mathrm{Ha}$ and C 2 He , respectively) \}, and one of the four hydrogen-bonded phenolic protons $[\delta 14.291$ (C-6 OH)] were assigned by comparison with the ${ }^{1} \mathrm{H}$-nmr spectra of noracronycine (2), AB-1 (3), AB-3 (4), and AB-5A (5) (11-14). Assignment of the sixteen aromatic protons was achieved mainly through comparison with the ${ }^{1} \mathrm{H}$-nmr spectra of $\mathbf{2 , 3}, \mathbf{4}$, and 5 (11-14). In addition, a number of nOe experiments were also conducted on $\mathrm{AB}-4$.

By irradiating $\delta 3.681\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$, a 12% nOe at $\delta 6.760(\mathrm{~d}, \mathrm{lH})$ and $16 \% \mathrm{nOe}$ at δ $5.168(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}-1 \mathrm{H})$ were observed, and when $\delta 3.643\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$ was irradiated, an 11% nOe was observed at $\delta 6.041\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}-\mathrm{l}^{\prime \prime \prime} \mathrm{H}\right)$. In addition, when $\delta 3.29(\mathrm{~N}-$ $\mathrm{CH}_{3} \times 2$) was irradiated, a $7 \% \mathrm{nOe}$ at $\delta 6.760(\mathrm{~d}, 1 \mathrm{H})$, a 10% nOe at $\delta 6.651(\mathrm{~d}, 1 \mathrm{H})$ and a 20% nOe at $\delta 4.6(\mathrm{dd}, 1 \mathrm{H} \times 2$) were observed.

Because the signals at $\delta 5.168(\mathrm{C}-1 \mathrm{H})$ and $\delta 6.041\left(\mathrm{C}-1^{\prime \prime \prime} \mathrm{H}\right)$ had been previously assigned, $\delta 3.681\left(\mathrm{~N}^{2} \mathrm{CH}_{3}\right)$ and $\delta 6.760(\mathrm{~d}, 1 \mathrm{H})$ were attributed to $\mathrm{N}_{12}-\mathrm{CH}_{3}$ and C 11 H , respectively, and $\delta 3.643\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$ was assigned to $\mathrm{N}_{12}{ }^{\prime \prime \prime}-\mathrm{CH}_{3}$. Two sets of methine and methylene protons [$\delta 1.358$ and 1.712 (each t), $\delta 1.441,1.809,4.563$ and 4.623 (each dd)] and two three-proton singlets ($\delta 3.290$ and 3.296) were assigned to the chromane and N-methyl protons of the second and third units.

It was confirmed that higher-field-shifted N-methyl signal(s), and the methine and methylene signals of the chromane unit(s) could be assigned to the unit(s) inserted between two angular type noracronycine moieties as previously observed in the ${ }^{1} \mathrm{H}$-nmr spectra of $\mathrm{AB}-3$ (4), dihydro $\mathrm{AB}-3$ (8), $\mathrm{AB}-5 \mathrm{~A}(5)$, and the linear-angular-angular-angular tetramer $A B-5 B(13,14)$. Thus, $A B-4$ (7) represents the second tetrameric acridone derivative obtained.

Two further oligomers of noracronycine (2) were obtained from the chromatography of the mixture obtained from the treatment of $\mathbf{2}$ with acid. Originally obtained as a mixture, AB-6, which showed ten $\mathrm{N}-\mathrm{CH}_{3}$ signals and ten hydrogen-bonded phenolic protons, gave separated products AB-6A and AB-6B that were identified as pentamers of 2 .

AB-6A was obtained as a yellow powder displaying a typical acridone uv spectrum. The ${ }^{1} \mathrm{H}$-nmr spectrum displayed geminal methyl signals ($\delta 0.537,0.669,0.733$, $0.978,1.162,1.343,1.465$, and 1.662), five hydrogen-bonded phenolic OH signals ($\delta 12.896,14.303,15.148,15.436$, and 15.597), five $\mathrm{N}-\mathrm{CH}_{3}$ signals ($\delta 3.342$, $3.588,3.635,3.664$, and 3.693) and twenty-one aromatic protons. The pyran ring methylene protons were not clearly delineated, but four benzylic protons on the pyran ring were observed as doublets of doublets at $\delta 4.606,4.799$, and $5.154(2 \mathrm{H})$, and a pair of doublets $(J=9.6 \mathrm{~Hz})$ at $\delta 5.043$ and 6.106 was attributed to the chromene ring protons on the terminal unit. The structure was deduced based on the previous assignments of the monomers, dimers, trimers, and oligomers in this series (11-14).

Three higher-field protons peri- to the $\mathrm{N}-\mathrm{CH}_{3}$ were observed in the spectrum of AB $6 \mathrm{~A}\{\delta 6.539$ and $6.729(2 \mathrm{H})$], suggesting the presence of three angular units each attached to an angular unit. The fifth unit should, therefore, be a linear unit, i.e., derived

from isonoracronycine (8). Confirmation of this came from the presence of two doublets at $\delta 7.395(J=8.4 \mathrm{~Hz})$ and $7.412(J=8.6 \mathrm{~Hz})$ for aromatic protons peri- to the $\mathrm{N}-\mathrm{CH}_{3}$ group and their adjacent protons at $\delta 7.76(2 \mathrm{H})$. On this basis, AB-6A is proposed to have the linear-angular-angular-angular-angular-linear structure shown in 9 , together with the tentative proton assignments.

AB-6B was also obtained as a yellow powder displaying a typical acridone uv spectrum. The ${ }^{1} \mathrm{H}$-nmr spectrum displayed five sers of geminal methyl signals ($\delta 0.280$, $0.516,0.546,0.741,0.857,0.878,0.981,1.000,1.51$, and 1.66), five hydrogenbonded phenolic OH signals ($\delta 13.519,14.327,15.077,15.247$, and 15.429), five $\mathrm{N}-\mathrm{CH}_{3}$ signals $(\delta 3.283,3.290,3.493,3.647$, and 3.730) and twenty-one aromatic protons. These data established the pentameric nature of the compound. Once again, the pyran ring methylene protons were not clearly delineated, but four benzylic protons were observed as doublets of doublets at $\delta 4.513(2 \mathrm{H}), 5.151$ and 5.154 . Characteristic doublets $(J=9.6 \mathrm{~Hz}$) were observed for the chromene ring protons of the terminal unit at $\delta 5.021$ and 6.062 . The structure of $\mathrm{AB}-6 \mathrm{~B}$ was deduced to be the angular-angular-angular-angular-angular structure shown in 5 on the basis of the following interpretations.

There are four higher-field protons peri- to the $\mathrm{N}-\mathrm{CH}_{3}$ group at $\delta 6.531,6.686$, 6.775 , and 6.827 , suggesting the presence of four angular units each attached to an an-
gular unit, and only one lowfield signal at $\delta 7.317(\mathrm{~d}, J=7.6 \mathrm{~Hz})$ with its adjacent triplet at $\delta 7.712$. Based on previous spectroscopic interpretations, these data would indicate the structure 5 for $\mathrm{AB}-6 \mathrm{~B}$.

The planar structures for $A B-6 B$ and $A B-5 A$ are therefore the same (14). They differ in their chromatographic properties and also in several aspects of their ${ }^{1} \mathrm{H}$-nmr spectra. Among these differences is the fact that AB-5A has only one lower-field shifted doublet of doublets at $\delta 5.175$ (14), whereas AB-6B has two such signals ($\delta 5.151$ and $\delta 5.154$), and in AB-6B one of the signals peri- to the carbonyl is shifted upfield by 0.254 ppm compared with the most upfield signal peri- to the carbonyl in AB-5A. It is therefore suggested that $A B-5 A$ and $A B-6 B$ differ in stereochemistry at one (or more) of the points of attachment of the angular nuclei.

EXPERIMENTAL

General experimental procedures.-Melting points were determined using a Kofler hotstage microscope and are uncorrected. Uv spectra were recorded on a Beckman model DB-G spectrophotometer and ir spectra on a Nicolet model MX-1 FT-IR interferometer. ${ }^{1} \mathrm{H}$-nmr spectra were recorded on a Nicolet NT-360 instrument operating at 360 MHz at the NSF Regional NMR Facility at the University of Illinois at Urbana, Urbana-Champaign. Silica gel GHLF (Analrech) was used for preparative tlc.

Preparation of noracronycine (2). -The formation and chemical and spectroscopic properties of $\mathbf{2}$ were described previously (11,15).

Formation of ab-1 (3), AB-3 (4) AND AB-4 (7). -Noracronycine (2, 100 mg) was dissolved in a mixture of $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}(9: 1)(100 \mathrm{ml})$, and the yellow solution was stirred at room temperature under N_{2}. After 24 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$, and extracted with CHCl_{3} ($2 \times 500 \mathrm{ml}$). The combined CHCl_{3} layers were successively washed with $5 \% \mathrm{NaHCO}_{3}$ solution (500 ml) and $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford an orange-yellow powder. The approximate ratio of AB-1 (3) and noracronycine (2) (1:3) of this reaction mixture was confirmed by tlc analysis (no other spots were detected). The reaction mixture was then redissolved in a mixture of $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}(1: 9)(100 \mathrm{ml})$, and the yellow solution was stirred for 24 h under N_{2} at room temperature to give an orange solution. The reaction mixture was worked up in the same manner as described above to afford an orange powder (126.2 mg).

The orange powder was dissolved in a small amount of CHCl_{3} and subjected to preparative tle on silica gel eluting with $\mathrm{C}_{6} \mathrm{H}_{6}$ - $\mathrm{EtOAc}(9: 1)$ to afford noracronycine ($\mathbf{2}, 25.8 \mathrm{mg}$), $\mathrm{AB}-1$ ($\mathbf{3}, 19.2 \mathrm{mg}$), AB-3 ($4,20.4 \mathrm{mg}$), AB-4 ($7,8.6 \mathrm{mg}$), and a mixture of minor products (24.6 mg). AB-4 was obtained as a yellow powder; $\mathrm{mp}>300^{\circ}$; ir $\nu \max (\mathrm{KBr}) 3420,1587,1558,1447,1328,1264,1186,1166,1145,1122$, and $1099 \mathrm{~cm}^{-1}$; uv v max $\left(\mathrm{CHCl}_{3}\right) 257,282,307,348$, and $417 \mathrm{~nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta, \mathrm{CDCl}_{3}\right) 0.465(3 \mathrm{H}, \mathrm{s})$, $0.484(3 \mathrm{H}, \mathrm{s}), 0.543(3 \mathrm{H}, \mathrm{s}), 0.873(3 \mathrm{H}, \mathrm{s}), 0.940\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime \prime}-\mathrm{CH}_{3}\right), 1.005\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime \prime}-\mathrm{CH}_{3}\right), 1.358(1 \mathrm{H}$, $\mathrm{t}, J=12.8 \mathrm{~Hz}), 1.441(1 \mathrm{H}, \mathrm{dd}, J=11.4,8.0 \mathrm{~Hz}), 1.487\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 1.647\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 1.712$ $(1 \mathrm{H}, \mathrm{t}, J=11.8 \mathrm{~Hz}), 1.809(1 \mathrm{H}, \mathrm{dd}, J=12.7,6.6 \mathrm{~Hz}), 2.080\left(1 \mathrm{H}, \mathrm{t}, J=12.4 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}\right), 2.214(1 \mathrm{H}, \mathrm{dd}$, $J=13.4,6.7 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{e}}$), $3.290(3 \mathrm{H}, \mathrm{s}), 3296(3 \mathrm{H}, \mathrm{s}), 3.643\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}_{12} m-\mathrm{CH}_{3}\right), 3.681\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $4.563(1 \mathrm{H}, \mathrm{dd}, J=12.1,6.8 \mathrm{~Hz}), 4.623(1 \mathrm{H}, \mathrm{dd}, J=11.9,6.7 \mathrm{~Hz}), 4.994\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{2^{m}}\right)$, $5.168\left(1 \mathrm{H}, \mathrm{dd}, J=11.6,7.1 \mathrm{~Hz}, \mathrm{H}_{1}\right), 6.041\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{l}^{m}}\right), 6.362\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{5}\right), 6.651(1 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 6.760\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}_{11}\right), 7.115(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.136(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.157$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.311(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.331(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.362(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $\left.\mathrm{H}_{11^{m}}\right), 7.363(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.721\left(1 \mathrm{H}, \mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, \mathrm{H}_{10^{m}}\right), 8.246(2 \mathrm{H}, \mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}$, $\left.\mathrm{H}_{8}\right), 8.312(1 \mathrm{H}, \mathrm{dd}, J=7.5,0.8 \mathrm{~Hz}), 8.410\left(1 \mathrm{H}, \mathrm{dd}, J=7.7,0.9 \mathrm{~Hz}, \mathrm{H}_{8}{ }^{m}\right), 14.291\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6}-\mathrm{OH}\right)$, $14.979(1 \mathrm{H}, \mathrm{s}), 15.087(1 \mathrm{H}, \mathrm{s})$, and $15.458(1 \mathrm{H}, \mathrm{s})$.

Formation of ab-6 and the separation of ab-6a (9) AND ab-6B (5).-Noracronycine (2, 500 mg) was dissolved in $\mathrm{MeOH}(167 \mathrm{ml})$ and 10 N aqueous $\mathrm{HCl}(67 \mathrm{ml})$, and the mixture refluxed over a steam bath for 6 h . After cooling, the reaction mixture was concentrated in vacuo to about 100 ml and diluted with $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{ml})$. The solution was neutralized with NaHCO_{3} and extracted with CHCl_{3} (2×500 ml). After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), the CHCl_{3} layer was concentrated in vacuo to afford an orange powder (557.5 mg). Repeated column chromatography on silica gel followed by repeated preparative tlc using $\mathrm{C}_{6} \mathrm{H}_{6}-$ $\mathrm{EtOAc}(9: 1)$ or $\mathrm{CHCl}_{3}-\mathrm{MeOH}(249: 1)$ as solvent afforded $\mathrm{AB}-6 \mathrm{~A}(9,1.8 \mathrm{mg})$ and $\mathrm{AB}-6 \mathrm{~B}(5,1.5 \mathrm{mg})$ after $\mathrm{AB}-1(3,13 \mathrm{mg})(12), \mathrm{AB}-2(6,18 \mathrm{mg})(12), \mathrm{AB}-3(4,9 \mathrm{mg})(13), \mathrm{AB}-4(7,0.8 \mathrm{mg}), \mathrm{AB}-5 \mathrm{~A}(5,3.0 \mathrm{mg})$ (14) and AB-5B (4.1 mg) (14) had been isolated.
$\mathrm{AB}-6 \mathrm{~A}(9)$ was obtained as a pale yellow powder; uv $\lambda \max \left(\mathrm{CHCl}_{3}\right) 255,279,305$ (sh), 343, and 415
$\mathrm{nm} ;{ }^{1} \mathrm{H} \operatorname{nmr}\left(\delta, \mathrm{CDCl}_{3}\right) 0.537(3 \mathrm{H}, \mathrm{s}), 0.669(3 \mathrm{H}, \mathrm{s}), 0.733(3 \mathrm{H}, \mathrm{s}), 0.978(3 \mathrm{H}, \mathrm{s}), 1.162(3 \mathrm{H}, \mathrm{s}), 1.343$ $(3 \mathrm{H}, \mathrm{s}), 1.465(3 \mathrm{H}, \mathrm{s}), 1.662(3 \mathrm{H}, \mathrm{s}), 3.342(3 \mathrm{H}, \mathrm{s}), 3.588(3 \mathrm{H}, \mathrm{s}), 3.635(3 \mathrm{H}, \mathrm{s}), 3.664(3 \mathrm{H}, \mathrm{s})$, $3.693(3 \mathrm{H}, \mathrm{s}), 4.606(1 \mathrm{H}, \mathrm{dd}, J=6.3,12.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}), 4.799(1 \mathrm{H}, \mathrm{dd}, J=6.5,12.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}), 5.043$ $\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{Ha}, \mathrm{C}_{2}{ }^{\prime \prime \prime}-\mathrm{H}\right), 5.154(2 \mathrm{H}, \mathrm{dd}, J=6.1,11.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}), 6.106\left(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\prime \prime \prime}-\mathrm{H}\right)$, $6.367\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{12}-\mathrm{H}\right), 6.539(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 6.729(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 6.964(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{e}), 7.031(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{e}), 7.149(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{e}), 7.298(1 \mathrm{H}, \mathrm{t}, J=8.0$ $\mathrm{Hz}, \mathrm{H}-\mathrm{e}), 7.321(2 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{e}), 7.369(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{e}), 7.395(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-$ c), $7.412(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{c}), 7.760\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{9}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{10}{ }^{\prime \prime \prime \prime}-\mathrm{H}\right), 8.023(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{d})$, $8.182(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 8.224(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 8.260(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 8.466$ $(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz} ; \mathrm{H}-\mathrm{d}), 12.896(1 \mathrm{H}, \mathrm{s}), 14.303(1 \mathrm{H}, \mathrm{s}), 15.148(1 \mathrm{H}, \mathrm{s}), 15.436(1 \mathrm{H}, \mathrm{s})$, and 15.597 (1H, s).
$\mathrm{AB}-6 \mathrm{~B}(5)$ was isolated as a yellow powder; uv $\lambda \max \left(\mathrm{CHCl}_{3}\right) 256,283,304$ (sh), 347, and 414 nm ; ${ }^{1} \mathrm{H}$ nmr $0.280(3 \mathrm{H}, \mathrm{s}), 0.516(3 \mathrm{H}, \mathrm{s}), 0.546(3 \mathrm{H}, \mathrm{s}), 0.741(3 \mathrm{H}, \mathrm{s}), 0.857(3 \mathrm{H}, \mathrm{s}), 0.878(3 \mathrm{H}, \mathrm{s}), 0.981$ $(3 \mathrm{H}, \mathrm{s}), 1.000(3 \mathrm{H}, \mathrm{s}), 1.510(3 \mathrm{H}, \mathrm{s}), 1.660(3 \mathrm{H}, \mathrm{s}), 2.090\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{2}-\mathrm{H}_{\mathrm{a}}\right), 2.250\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{C}_{2}-\mathrm{H}_{e}\right)$, 3.283 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{e}$), 3.290 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{e}$), 3.493 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{e}$), 3.647 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{f}$), 3.730 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{f}$), $4.513(2 \mathrm{H}, \mathrm{dd}, J=6.3,11.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}), 5.021\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{C}_{2} \cdots-\mathrm{H}\right), 5.151(1 \mathrm{H}, \mathrm{dd}, J=6.2,10.8$ $\mathrm{Hz}, \mathrm{H}-\mathrm{a}), 5.154(1 \mathrm{H}, \mathrm{dd}, J=6.6,12.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}), 6.062\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{C}_{1} \cdots \mathrm{H}\right), 6.357\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5}-\right.$ $\mathrm{H}), 6.531(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 6.686(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 6.775(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{b})$, $6.827(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}), 6.981(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{H}, \mathrm{H}-\mathrm{d}), 7.041(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 7.136$ $(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 7.176(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 7.317\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{11} \cdots \mathrm{~m}\right), 7.389(3 \mathrm{H}$, $\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{d}), 7.712\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{10} \cdots-\mathrm{H}\right), 7.974(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{c}), 8.256(1 \mathrm{H}, \mathrm{d}$, $J=7.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{c}), 8.277(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{c}), 8.398(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{c}), 13.519(1 \mathrm{H}, \mathrm{s})$, $14.327(1 \mathrm{H}, \mathrm{s}), 15.077(1 \mathrm{H}, \mathrm{s}), 15.247(1 \mathrm{H}, \mathrm{s})$, and $15.429(1 \mathrm{H}, \mathrm{s})$.

ACKNOWLEDGMENTS

This work was supported, in part, by grant CA-20164 from the Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland. High field nuclear magnetic resonance spectra were obtained at the Midwest Regional NMR Facility, University of Illinois at Urbana, Urbana-Champaign. This facility is funded, in part, by the National Science Foundation, grant number CHE 79-16100.

LITERATURE CITED

1. S. Funayama and G.A. Cordell, J. Nat. Prod., 48, 938 (1985).
2. G.K. Hughes, F.N. Lahey, J.R. Price, and L.J. Webb, Nature, 162, 223 (1948).
3. F.N. Lahey and W.C. Thomas, Aust. J. Sci. Res., 2A, 423 (1949).
4. R.D. Brown, L.J. Drummond, F.N. Lahey, and W.C. Thomas, Aust. J. Sci. Res., 2A, 622 (1949).
5. L.J. Drummond and F.N. Lahey, Aust. J. Sci. Res., 2A, 630 (1949).
6. G.H. Svoboda, G.A. Poore, P.J. Simpson, and G.B. Boder, J. Pharm. Sci., 55, 758 (1966).
7. G.H. Svoboda, Lloydia, 29, 206 (1966).
8. B.P. Dunn, P.W. Gout, and C.T. Beer, Cancer Res., 33, 2310 (1973).
9. P. Tan and N. Auersperg, Cancer Res., 33, 2320 (1973).
10. S. Funayama and G.A. Cordell, J. Nat. Prod., 48, 547 (1985).
11. S. Funayama and G.A. Cordell, Planta Med., 50, 121 (1984).
12. S. Funayama, G.A. Cordell, H. Wagner, and H.L. Lotter, J. Nat. Prod., 47, 143 (1984).
13. S. Funayama and G.A. Cordell, Planta Med., 48, 263 (1983).
14. S. Funayama, G.A. Cordell, R.D. McFarlane, and C.J. McNeal, J. Org. Chem., 50, 1737 (1985).
15. S. Funayama, R.P. Borris, and G.A. Cordell, J. Nat. Prod., 46, 391 (1983).

Received 22 April 1985

[^0]: ${ }^{1}$ For the previous paper in this series see Funayama and Cordell (1).
 ${ }^{2}$ Present address: The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan.

